Новости
Mail.Ru Group выделила Big Data
Mail.Ru Group выделила в отдельное направление работу с big data своих клиентов.
Mail.Ru Group выделила в отдельное направление работу с big data своих клиентов. В рамках нового направления будут предоставляться услуги по созданию предиктивных математических моделей, проведению маркетинговых исследований, консалтингу в области развития инфраструктуры и методологии работы с большими данными. Директором по развитию бизнеса направления «Большие данные» назначен Роман Стятюгин.
Компания занимается анализом данных фактически с момента основания. Накопленная экспертиза и компетенции позволяют предоставлять услуги по анализу big data сторонним заказчикам вне зависимости от географии присутствия. Прежде всего, это проекты, которые направлены на серьезное повышение эффективности процессов маркетинга и продаж, оптимизации производства, логистики, управления рисками, планирования, управления персоналом и другие рабочие процессы различных бизнесов. В этой связи было принято решение выделить эту работу в отдельное подразделение, – прокомментировал Дмитрий Сергеев, заместитель генерального директора Mail.Ru Group.
Целью анализа больших данных является извлечение закономерностей из ограниченного объема данных с возможностью их распространения на весь массив информации. Полученная таким образом закономерность может служить моделью предсказания наступления какого-либо события и в итоге может существенно повысить эффективность бизнес-процессов организаций.
К примеру, модели прогнозирования оттока клиентов, отклика на предложения, прогноз реакции на обращение через определенный канал коммуникации позволяют cделать взаимодействие с потенциальным клиентом более персонифицированным, учитывающим контекст ситуации, и тем самым добиться повышения коммерческих показателей организации, максимально заботясь о лояльности ее клиентов.
В реализации используются как собственные технологии (например, NoSQL базы данных Tarantool), так и другие open source-решения (Apache Hadoop, Apache Spark). Для построения предиктивных математических моделей используются методы машинного обучения (Machine Learning), в том числе собственные разработки компании, например, алгоритм построения моделей Multiclass Look-alike, являющийся развитием метода PU Learning.