Connect with us

Программирование

Лучше код – проще тестирование

На двух примерах разработчик Node.js Владо Копич показал, насколько неразрывно связаны создание хорошего кода и простота тестирования.

Анна Гуляева

Опубликовано

/

     
     

На двух примерах разработчик Node.js Владо Копич показал, насколько неразрывно связаны создание хорошего кода и простота тестирования.

Тестирование – неизбежный краеугольный камень любого проекта, стоящий всех трудов. Это не значит, что процесс сам по себе приносит удовольствие, на самом деле многие программисты вздрагивают при одной мысли о том, чтобы потратить драгоценные часы на тестирование кода, который и так работает. Postman должно быть достаточно, да?

Ну нет. И вы никогда не должны ориентироваться на удобство: пока вы не протестировали и не исправили все возможные аспекты вашего кода, он не может считаться законченным. И более того, выработка хороших привычек тестирования со временем изменит ваш подход к написанию кода. Вы скоро заметите, что вы пишете более красивый и чистый код, потому что у вас в подсознании сидит мысль: “Как я протестирую эту функцию?” Давайте перейдем к делу!

Красота и бойлерплейт

Тестирование требует определенного уровня знакомства с процессом создания кода и лучшими практиками, так как создание чистого кода значительно снижает расходы на тесты. Что это значит? Что ж, рассмотрим довольно распространенный бэкенд-процесс: создание процесса регистрации пользователя для некого API. Просто, да?

Не всегда. Давайте разделим два возможных подхода: один – от менее опытного разработчика, а второй – от человека, умеющего писать открытый для тестирования код.

Программисту А могут не нравиться promise, поэтому он отказывается от обеспечения связности и читаемости и просто используют callback  функции для работы со всеми своими асинхронными вызовами. Это очень распространено среди начинающих программистов (виноват, я и сам так делал в самом начале работы). Так как это работает, программист может даже не задумываться об изучении promise – зачем? Оказывается, существует очень хорошая причина (помимо преимуществ обучения и самосовершенствования).

Если вы постоянно используете обратные вызовы, случается “ад обратных вызовов”, что делает тестирование этого кода реальным вызовом! Не говоря уже о том, что ваш код выглядит ужасно уродливо.

Программист А также перегружает свои контроллеры, включая туда большое количество стандартного кода, который легко можно было извлечь в хелпер, поместить в папку utils и запросить его при необходимости. Но он пока этого не знает, поэтому делает, что умеет. Все это приводит к тому, что контроллер сложно читать, сложно понимать и сложно тестировать.

С другой стороны, программист Б знает promise и любит их. Почему бы их не любить? Когда вы правильно соединяете их, они выглядят хорошо, занимают меньше места на экране, в них проще находить ошибки и их проще тестировать.

Итак, программист Б, более опытный и уверенный в своей способности к решению проблем, работает с promise с самого начала, создает красивый и читаемый код, который делает свою работу, и не нагромождает пирамиды из скобок и диагонального кода.

user.save()
 .then(user => res.status(200).send(user))
 .then(() => console.log('User saved'))
 .catch(error => next(error))

Он также заботится о создании хелперов, улучшая читаемость и возможность к повторному использованию определенных аспектов контроллера.

Что посеешь – то и пожнешь

В конце концов, оба подхода приводят к завершению работы. Давайте посмотрим, как наши программисты справляются с тестированием кода. Мы изучим два случая: юнит-тестирование для хелперов (utils) и компонентное тестирование для самих контроллеров.

Программист А начинает работать над юнит-тестами… и он понимает, что у него почти нет хелперов для тестирования. Так как он не позаботился о том, чтобы разделить фрагменты кода, которые снова можно использовать, на отдельные файлы, многие из “хелперов” включены в контроллер, что приводит к огромному количеству скопированного и вставленного стандартного кода.

Контроллер может выполнять свою работу, но этот подход ухудшает читаемость и приводит к тому, что программисту А нужно тестировать один и тот же код снова и снова.

У программиста Б, с другой стороны, все хелперы организованы в папке utils и могут быть вызваны по необходимости. Этот подход позволяет программисту Б провести юнит-тест для каждого из них один раз, и он знает, что если тест был пройден, то он будет пройден для каждой функции в контроллере. Чисто, быстро и менее затратно.

Время компонентного тестирования!

Программист А уже приступает к компонентному тестированию, потому что его хелпер находится в контроллере, так что в юнит-тестировании мало смысла. Конечно, это значит, что время для тестирования контроллера значительно возрастает из-за уже упомянутых причин. В дополнение к этому, ему нужно иметь дело с неблагодарным занятием тестирования callback-ов, попадая из метафорического ада функций в настоящий ад тестирования.

Давайте посмотрим, как дела у программиста Б. Отлично! Он только что закончил компонентное тестирование для процесса регистрации, который стал гораздо проще, потому что хелперы уже протестированы с самого начала.

Конечно, больше всего времени здесь экономят promise. Вместо того, чтобы постоянно тестировать каждую ошибку для каждой функции обратного вызова, как программист А, программист Б всего лишь должен протестировать каждый promise дважды. Это упрощается процесс, потому что promise показывает ошибки в блоке .catch() в конце каждой цепочки promise, отображая возможный отказ каждого promise над блоком .catch().

Умный код, простые тесты, счастливый разработчик

Можно сказать, что программисту Б гораздо проще тестировать процесс регистрации, а дальнейшая разработка контроллера будет проще с разделенными хелперами и использованием promise для улучшенной читаемости и функциональности кода.

Эти примеры очень субъективны и случайны, и я специально не сказал о некоторых современных функциях вроде async/await из ES8, чтобы объяснить свою позицию максимально просто: размышляя о тестировании, вы неизбежно создадите более качественный код, который будет легко тестировать.

Это как цикл положительной обратной связи: подсознательно вы начнете думать о коде с позиции тестирования во время его создания. Сохраните себе нервы – в будущем вы будете благодарны.

 

Комментарии
Если вы нашли опечатку - выделите ее и нажмите Ctrl + Enter! Для связи с нами вы можете использовать info@apptractor.ru.
Advertisement
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Программирование

Правила, которые я выработал по результатам 1000 code review

Леонид Боголюбов

Опубликовано

/

Во время работы в LinkedIn большая часть моей работы состояла из проверки кода. Были определенные ситуации, которые постоянно возникали снова и снова, поэтому я решил составить список, которым и поделился с командой.

Вот мои 3 (+1 бонус) наиболее распространенных правки, которые я делал во время code review.

Правка 1: Генерирование исключения, когда что-то идет не так

Обычно я видел такое:

List<String> getSearchResults(...) {
  try {
    List<String> results = // make REST call to search service
    return results;
  } catch (RemoteInvocationException e) {
    return Collections.emptyList();
  }
}

Этот код вызвал сбои в одном из мобильных приложений, над которым я работал. Поисковый бэкенд, который мы использовали, стал выбрасывать исключения. Тем не менее, в приложении имелся код, подобный этому. Поэтому, с точки зрения приложения, оно получало успешный ответ 200 и с радостью показывало пустой список для каждого поискового запроса.

Если бы вместо этого API выбросил исключение, то наша система мониторинга немедленно подобрала бы его, обработала и мы ошибку исправили.

Во многих случаях возникает соблазн просто вернуть пустой объект после того, как вы поймали исключение. Примерами пустых объектов в Java являются Optional.empty(), нулевой или пустой список. Хорошим примером того, где это все встречается постоянно, является парсинг URL. Вместо того, чтобы возвращать null, если URL-адрес не может быть получен из строки, спросите себя: «Почему URL-адрес неправильно сформирован? Является ли это проблемой данных, которую мы должны исправить где-то выше?».

Пустые объекты не являются подходящим инструментом для работы. Если случилось что-то исключительное, то вы должны выбросить исключение.

Правка 2: Использование наиболее конкретного типа

Это предложение в основном противоречит строгому типизированному программированию.

Слишком часто я видел код, подобный этому примеру:

void doOperation(String opType, Data data); 
// where opType is "insert", "append", or "delete", this should have clearly been an enum

String fetchWebsite(String url);
// where url is "https://google.com", this should have been an URN

String parseId(Input input);
// the return type is String but ids are actually Longs like "6345789"

Использование наиболее конкретного типа позволяет избежать целого класса ошибок и, в основном, является основной причиной выбора строго типизированного языка, такого как Java.

Внимание, вопрос: как опытные программисты в конечном итоге пишут плохой типизированный код? Ответ: потому что внешний мир не сильно типизирован. Есть несколько разных мест, откуда берутся строки, например:

  • параметры запроса и пути в URL-адресах
  • JSON
  • Базы данных, которые не поддерживают enum
  • Плохо написанные библиотеки

В любом таком случае вы должны использовать следующую стратегию, чтобы избежать проблем – сохранить парсинг строки и сериализацию в вашей программе. Вот пример:

// Step 1: Take a query param representing a company name / member id pair and parse it
// example: context=Pair(linkedin,456)
Pair<String, Long> companyMember = parseQueryParam("context");
// this should throw an exception if malformed

// Step 2: Do all the stuff in your application
// MOST if not all of your code should live in this area

// Step 3: Convert the parameter back into a String at the very end if necessary
String redirectLink = serializeQueryParam("context");

Это дает ряд преимуществ. Неправильные данные немедленно обнаруживаются; в случае возникновении проблем приложение падает раньше. Кроме того, вам не нужно сохранять исключения для парсинга по всему приложению, так данные проверяются один раз. Кроме того, сильные типы сами по себе более полно описывают методы и вам не надо писать javadocs для каждого метода.

Правка 3: Использование Optionals вместо null

Одна из лучших функций Java 8 – это класс Optional, который представляет собой объект, который может существовать или не существовать.

Вопрос на миллион долларов: какое единственное исключение имеет собственную аббревиатуру? Ответ: NPE или Null Pointer Exception. Это, безусловно, самое распространенное исключение в  Java и, конечно, ошибка, которая стоит миллион долларов.

Optional позволяет вам полностью устранить NPE. Однако его следует использовать правильно. Вот некоторые советы по работе с Optional:

  • Не надо просто называть .get () в любое время, когда вам надо использовать Optional. Вместо этого внимательно подумайте о том случае, когда Optional не представлен, и придумайте разумное значение по умолчанию.
  • Если у вас еще нет разумного значения по умолчанию, тогда такие методы, как .map () и .flatMap (), позволяют отложить это решение.
  • Если внешняя библиотека возвращает значение NULL, чтобы указать на пустой случай, сразу же оберните значение с помощью параметра Optional.ofNullable (). Поверьте мне, вы поблагодарите себя позже. Нули имеют тенденцию «всплывать» внутри программ, поэтому лучше остановить их в первоисточнике.
  • Используйте Optional как возвращаемый тип в методах. Это здорово, потому что вам не нужно будет читать javadoc, чтобы выяснить, возможно ли, чтобы значение было пустым.

Бонус: Использование Unlift методов, когда это возможно

Вы должны избегать методов, которые выглядят следующим образом:

// AVOID:
CompletableFuture<T> method(CompletableFuture<S> param);
// PREFER: 
T method(S param);

// AVOID:
List<T> method(List<S> param);
// PREFER:
T method(S param);

// AVOID: 
T method(A param1, B param2, Optional<C> param3);
// PREFER:
T method(A param1, B param2, C param3);
T method(A param1, B param2);
// This method is clearly doing two things, it should be two methods
// The same is true for boolean parameters

Что общего у всех этих методов? Они используют контейнерные объекты, такие как Optional, List или Task как параметры методов. Еще хуже, когда  возвращаемый тип является тем же самым (т.е. метод принимает Optional и возвращает Optional).

Почему это плохо?

  1. Promise<A> method(Promise<B> param)
    менее гибко, чем просто
  2. A method(B param)

Если у вас есть Promise <B>, вы можете использовать 1, или вы можете использовать 2 путем «подъема» функции с помощью .map. (т.е. promise.map(method)).

Однако, если у вас есть только B, вы можете легко использовать 2, но вы не можете использовать 1, что делает 2 гораздо более гибким вариантом.

Мне нравится называть это «неподъемным», потому что это противоположность общепринятому функциональному методу «подъем». Применение этих знаний делает методы более гибкими и удобными для использования.

 

Комментарии
Продолжить чтение

Новости

Физтехи стали чемпионами России по программированию

2-3 декабря 2017 года команда МФТИ MIPT Cryptozoology в составе Александра Останина, Александра Голованова, Никиты Уварова завоевали абсолютное первое место в полуфинале чемпионата мира по программированию ACM ICPC.

AppTractor

Опубликовано

/

Автор:

В минувшие выходные на четырёх площадках России и СНГ состоялся полуфинал международного студенческого чемпионата мира по программированию ACM ICPC — Northern Eurasia Regional Contest. Более 300 команд собрались в университетах Санкт-Петербурга, Барнаула, Тбилиси и Алматы, чтобы побороться за победу на финале в Пекине.

Правила соревнования традиционны для всех этапов чемпионата по программированию ACM ICPC: у участников есть пять часов для решения 12 задач. При оценке результатов оценивается не только правильное решение задачи, но и время, затраченное на неё — победителем становится та команда, которая смогла выполнить наибольшее количество задач за наименьшее количество времени.

В Университет ИТМО приехали 128 команд. Рекордное количество команд представил Физтех — на полуфинал приехали целых семь!

В этом году абсолютным лидером полуфинала NEERC стала команда МФТИ Cryptozoology в составе Александра Останина, Александра Голованова, Никиты Уварова, тренер Михаил Тихомиров, руководитель Алексей Малеев. Первое место в полуфинале чемпионата студенты МФТИ занимают впервые. Ранее, в октябре, эта же команда заняла первое место в 1/4 чемпионата, завоевав титул чемпионов Москвы.

Ребята смогли решить 10 из 12 задач. Как отмечает Олег Христенко, комментатор онлайн-трансляции чемпионата, один из тренеров Центра развития ИТ-образования, команда шла «правильной дорогой», решая задачи в порядке сложности.

«Задачи были хорошие, некоторые было просто решить, некоторые не очень. Вообще надеемся на золотую медаль в этом году», — комментирует победу Александр Голованов.

«Очень приятно, что в этот раз победу одержали, от себя могу добавить, что они много тренировались, в частности, уже в этом учебном году отработали с полной отдачей на сборах в Петрозаводске, Барселоне и Долгопрудном. Это отличный результат, очередной шаг признания высокого уровня подготовки студентов МФТИ в области Computer Science», – говорит директор Центра развития ИТ-образования, Алексей Малеев.

По итогам соревнования в финал прошли 16 команд, 14 (88%) из которых принимали участие в тренировочных сборах Moscow Workshops ACM ICPC в этом учебном году. Все они поедут на финал, который состоится 20-25 апреля в Пекине.

Комментарии
Продолжить чтение

Программирование

Программирование это новый пузырь?

Тайлер Эллиот Беттилион рассуждает о том, исчезнет ли профессия программиста с ростом автоматизации и повсеместным распространением компьютерной грамотности.

Анна Гуляева

Опубликовано

/

Моя подруга недавно задала вопрос, который я слышал много раз в разных вариациях:

Не кажется ли вам, что некоторые низкоуровневые профессии программистов вымрут как птицы додо? Сейчас это похоже на большой пузырь, который рано или поздно лопнет. Мне кажется, что одна из причин “престижности” технологических и связанных с наукой (на низком уровне) профессий заключается в нелепом жаргоне индустрии и всеобщей компьютерной неграмотности, и оба этих фактора исчезнут в следующие десять лет […]

Это высказывание поднимает вопрос о будущем технологических профессий и показывает распространенные заблуждения об области разработки ПО. Хотя в индустрии действительно существует «нелепый жаргон», но для решения многих сложных проблем действительно требуется нужный набор навыков. Некоторые профессии исчезают, но программисты с нужным опытом и знаниями продолжат цениться и хорошо зарабатывать ещё многие годы, как показывает недавний рост зарплат ИИ-специалистов и нехватка специалистов с этим навыком.

Следовать за меняющимся технологическим ландшафтом может быть сложно. Мы должны уметь предсказывать, какие профессии исчезнут с рынка, потому что их заменят технологии. Также мы должны следить за ростом количества людей, которые учатся программировать, чтобы предугадать, как изменятся зарплаты и спрос на определенные навыки. Как сказала Ханна, «всеобщая компьютерная неграмотность» влияет на размер зарплат программистов, но люди узнают больше о технологиях с каждым годом.

Движение к коммодификации

Страх того, что алгоритмы заменят людей на работе, — не нов и не беспричинен. В любой области, а особенно в технологии, силы рынка подталкивают корпорации к автоматизации и коммодификации. Один из способов изображения этого явления — циклы хайпа Gartner.

С течением времени специфичные идеи и технологии доходят до «плато продуктивности», где их автоматизируют. Взглянув в прошлое, можно подумать, что автоматизация может разрушать определенные рынки труда. В разных индустриях, от сбора урожая до сборки автомобиля, технологические открытия заменили и дополнили человеческий труд, чтобы сократить затраты. Один профессор во время курса по компиляторам однажды сказал: «Посмотрите на текстильную и металлургическую промышленности: вы хотите строить машины и инструменты или вы хотите ими управлять?».

Коммодификация (от англ. commodity — товар) – процесс, в ходе которого все большее число различных видов человеческой деятельности обретает денежную стоимость и фактически становится товарами, покупаемыми и продаваемыми на рынке.

В этой метафоре «машиной» является язык программирования. Этот профессор спрашивал: вы хотите делать сайты на JavaScript или вы хотите создавать движок V8 для JavaScript?

Создание веб-сайтов уже автоматизировано при помощи WordPress и других сервисов. С другой стороны, у V8 появляются конкуренты, некоторые из которых решают открытые вопросы. Языки приходят и уходят (сколько сейчас открыто вакансий для Fortran?), но всегда будут люди, создающие следующий язык. К счастью для нас, все реализации пишутся на языках программирования. Путь «оператора машины» в программировании делает вас «создателем машины» в том смысле, который оказался неверным для работников сталелитейных заводом в прошлом.

Растущее число языков, интерпретаторов и компиляторов показывает нам, что каждая разрушающая профессии машина приносит новые возможности улучшения и развития самой машины. Несмотря на то, что список уже несуществующих профессий растет, пока не настал этот момент в истории, когда человечество скажет: «Думаем, что больше работы для нас не осталось».

Коммодификация распространяется на всё, не только на программирование. Человеческий труд постоянно заменялся автоматизированным или дополнялся таким образом, что требовал меньше людей. Беспилотные автомобили и грузовики являются последним примером этой великой традиции. Если цикл создания и автоматизации является частью жизни, то естественно будет спросить: какие работы и индустрии находятся в зоне риска, а какие нет?

Кто автоматизирует кого?

AWS, Heroku и другие аналогичные хостинговые платформы навсегда изменили роль системного администратора и DevOps-инженера. Раньше интернет-бизнесу был необходим свой “мастер серверов”. Кто-то, кто был подкован в Linux, мог настроить сервер Apache или NGINX, подключить все физические компоненты и сделать все необходимое для того, чтобы сервер стал доступным в публичном вебе. Хотя некоторые люди по-прежнему применяют этот навык в работе, AWS делают некоторые из этих навыков устаревшими, особенно на уровне небольшого опыта и размещения оборудования. В Amazon, Netflix и Google существуют хорошо оплачиваемые вакансии для людей с глубокими знаниями в инфраструктуре сетей, но спрос в малом и среднем бизнесе на таких людей значительно упал.

Инструменты бизнес-аналитики, такие как SalesForce, Tableau и SpotFire также начали занимать пространство, которое исторически занимали инженеры. Эти системы сократили потребность в штатных администраторах баз данных, но они увеличили спрос на понимание SQL. Они сократили потребность во внутренней технологии отчетности, но увеличили спрос на «инженеров интеграции», которые автоматизируют поток данных к сторонним платформам. Ранее этим полем правили Excel и таблицы, а теперь оно перешло к языкам вроде Python и R, а также SQL для управления данными. Некоторые профессии исчезли, но в целом спрос на разработчиков программ вырос.

Data Science — это ещё один интересный пример коммодификации, более близкой к программированию. Scikit.learn, Tensorflow и PyTorch — это библиотеки, которые упрощают людям задачу создания приложений с машинным обучением, устраняя необходимость создания алгоритмов с нуля. На самом деле, теперь возможно провести набор данных через многие алгоритмы машинного обучения с разными параметрами, практически не понимая работу этих алгоритмом (это неправильно, но возможно). Компании бизнес-аналитики, вероятно, будут пытаться интегрировать эти алгоритмы в свои инструменты в следующие несколько лет.

Во многом Data Science сейчас похожа на веб-разработку 5–8 лет назад. Это популярная область, в которую вы можете попасть с небольшим количеством знаний из-за «разрыва в навыках». Программы по веб-разработке закрываются, а программы по data science появляются на их месте. Kaplan, которая купила первый лагерь по веб-рзработке Dev Bootcamp и основала лагерь по data science Metis, решила закрыть Dev BootCamp и поддерживать Metis.

Системы управления контентом являются наиболее заметными инструментами, автоматизирующими работу разработчика. SquareSpace и WordPress являются одними из самых популярных таких систем. Эти платформы значительно снижают ценность людей с навыками фронтенд-разработки. Барьер для создания и запуска сайта снизился настолько, что люди с нулевым опытом программирования успешно запускают сайты каждый день. Они не создают сайты с глубоким взаимодействие для миллиардов людей, но они создают сайта для своих компаний и клиентов. Хороший лендинг с контактами и адресом более чем достаточен для местного ресторана, бара или магазина.

Если ваш бизнес не связан с интернетом в своей деятельности напрямую, то вам проще простого завести работающий веб-сайт. В результате, однажды процветающая область веб-разработчиков для быстрого создания простых сайтов становится все менее прибыльной.

В этом контексте нельзя проигнорировать и физический аспект. Как сказал Майк Актон: «Программное обеспечение — это не платформа, аппаратное — платформа». Разработчикам стоит немного изучить компьютерную архитектуру и электротехнику. Большой переворот случится при появлении потребительского квантового компьютера, он изменит многое в профессиональном программировании.

Квантовые компьютеры пока далеки от нас, но растущий интерес к графическим процессорам и движение к параллелизации — это неминуемый сдвиг. Скорости работы процессоров остаются неизменными уже несколько лет, а за это время возникла потребность в машинном обучении. Желание работать с OpenMP, OpenCL, Go, CUDA и другими языками и фреймворками параллельной обработки данных никуда не денется и будет только нарастать. В ближайшем будущем параллелизация станет всеобщим требованием и выйдет за пределы ниш операционных систем, инфраструктуры и видеоигр.

Все учатся кодить

Веб-сайты повсеместны. Опрос Stack Overflow 2017 года показывает, что около 15% профессиональных разработчиков работают в компаниях, связанных с интернетом или веб-сервисами. Бюро статистики труда ожидает ускорение роста в веб-разработке (24% между 2014 и 2024). Благодаря видимости отрасли, многие сосредоточены на «сокращении разрыва в навыках». Лагери программирования обучают практически только веб-разработке, а онлайн-курсы по этой теме заполнили Udemy, Udacity, Coursera и другие платформы.

Комбинация роста автоматизации в веб-разработке и приток новых программистов привели к тому, что некоторые предсказывают появление рынка «синих воротничков» для разработчиков. Другие даже предполагают, что это движение к рынку “рабочих” специальностей является стратегией больших технологических компаний. Остальные, конечно, считают, что мы движемся к очередному пузырю.

Изменение спроса на определенные технологии — это не новость. Языки и фреймворки всегда то набирают силу, то теряют популярность. Веб-разработка в своей текущей инкарнации (JS — король) рано или поздно пройдет путь веб-разработки в начале 2000-х (помните Flash?). Новым является то, что многие люди изучают исключительно современные фреймворки веб-разработки. Прежде чем вы назовете себя React-разработчиком, вспомните, что были люди, которые идентифицировали себя как Flash-разработчиков. Полагаться на определенный язык, фреймворк или технологию в своей карьере рискованно. Конечно, сложно предсказать, какие технологии останутся релевантными, но если вы собираетесь пойти ва-банк, я рекомендую положиться на эффект Линди и выбрать что-то вроде C, который уже перенес испытание временем.

У следующего поколения будет такой уровень врожденной технологической грамотности, которого нет у поколения X и миллениалов. Одним результатом этого станет то, что CMS будут использоваться по умолчанию. Сами инструменты станут лучше, и молодые сотрудники будут лучше ими пользоваться. Эта комбинация определенно снизит ценность низкоуровневых навыков IT и веб-разработки, когда молодые специалисты войдут на рынок труда. Школы следуют за этим трендом, предлагая курсы программирования и информатики, и образованные ученики смогут сразу после окончания стать стажерами-программистами.

Другая большая группа потенциальных программистов включает выпускников MBA и аналитиков данных. В предложениях о работе, в которых прежде доминировал Excel, начинает использоваться SQL. Веб-метрики заменят таблицы в роли главного инструмента создания отчетов. Если это продолжится, все больше аналитиков данных будут сразу учить SQL, потому что он позволит проще экспортирования данные в таблицы.

Люди, желающие опередить своих сверстников в этих ролях, проходят онлайн-курсы для изучения баз данных и статистических языков программирования. С этими новыми навыками они смогут позиционировать себя как data scientists с навыками машинного обучения и статистических библиотек. Примером этого пути может быть программа обучения Metis.

Число людей с образованием в информатике и программировании продолжает расти. Университет Пердью сообщает, что количество заявлений на направление информатики удвоилось за пять лет. Корнелл сообщает об аналогичном росте числа выпускников по этому направлению. Этот тренд неудивителен в свете распространения ПО. Молодые люди не представляют будущего без компьютеров, поэтому хотят изучать то, что даст им уверенность в трудоустройстве.

Редкость и ожидание

В индустрии сейчас распространена идея о том, образование по направлению информатики в большинстве случаев является ненужным. Противоположная точка зрения также популярна, а некоторые даже говорят, что «все программисты должны получить степень магистра».

Как и Эрик Эллиотт, я считаю, что существует много хороших вариантов попасть в программирование, и степень бакалавра для некоторых может быть не лучшим вариантом. В то же время я согласен с Уильямом Бейном о том, что базовые навыки критически важны для долговременной карьеры, и эту информацию пока сложно найти вне университета. Ранее я писал о том, какие навыки я считаю фундаментальными для будущих инженеров, и поэтому я присоединился к школе Bradfield.

Школ программирования становится больше – и это не просто так. Вы можете многое узнать о программировании без знаний о большом «О», неясных структурах данных и деталей об алгоритмах. Иногда выпускники Стэнфорда соперничают с выпускниками Hack Reactor, но это верно только для одной или двух областей. Выпускники курсов программирования пока не работают в области встроенных систем, криптографии, безопасности, робототехники, инфраструктуры сетей или в разработке и исследовании искусственного интеллекта. Хотя эти области быстро растут.

Некоторые навыки уже превращаются из редких навыков в базовое ожидание. Понимание механизмов, вроде AWS, становится довольно распространенным. Но большие компании, развивающие технологии, обычно не ищут людей с «базовым пониманием JavaScript». AWS обслуживают миллиарды пользователей каждый день. Чтобы поддерживать такую инфраструктуру инженер должен понимать протоколы сетей, компьютерную архитектуру и иметь несколько лет аналогичного опыта работы. Как и в любой области, здесь есть любители и мастера.

Эти престижные фирмы исследуют проблемы и создают системы, которые действительно двигают границы возможного. Но они по-прежнему испытывают дефицит кадров, несмотря на то, что базовые навыки программирования достаточно распространены. Люди, которые могут писать алгоритмы для прогнозирования изменений в генах, которые дадут желаемый результат, будут очень ценными в будущем. Люди, которые могут программировать спутники и космические аппараты и автоматизировать машины, будут по-прежнему высоко цениться. Это не те области, для работы в которых достаточно «трехмесячной интенсивной программы», как в веб-разработке.

Предполагается, что молодые люди будут обладать врожденным пониманием компьютеров к 2025 году. К несчастью, распространенность компьютеров не привела к новому поколению людей, которые так же бы понимали математику, информатику, структуру сетей, электротехнику и так далее. Компьютерная грамотность не означает знание вычислений. Несмотря на то, что математика существует очень давно, по-прежнему только немногие люди обладают хорошим знанием статистики. Информатика почти так же стара, Эвклид изобрел несколько алгоритмов, один из которых используется при отправке HTTPS-запросов, но тот факт, что мы используем HTTPS каждый раз при входе на сайт, не означает, что все понимают работу этих протоколов.

Бимодальные распределения заработной платы

Во многих областях действует бимодальное распределение заработной платы: небольшое количество сотрудников зарабатывают большие деньги, а остальные получают неплохую зарплату, но не входят в верхний процент. NALP визуализирует этот феномен абсолютно понятно. Многие юристы зарабатывают между 45 и 65 тысячами долларов. Это хорошая зарплата, но мы не можем ассоциировать её с «топовыми профессионалами».

Мы думаем, что все новоиспеченные юристы стремятся месту партнера в фирме, хотя в реальности существует множество путей: помощник юриста, чиновник, общественный защитник, судья, юрист для бизнеса и т.д. У выпускников направления информатики существует столько же вариантов для профессиональной деятельности: от веб-разработки до встроенных систем.

Так как базовый уровень программирования становится распространенным требованием, я думаю, что похожее распределение возникнет и среди программистов. Всегда будет существовать группа программистов, получающих большие деньги за продвижение технологий вперед, но будет расти и количество программистов среднего уровня, которые будут обслуживать экономику. Средняя зарплата веб-разработчиков со временем будет падать, но количество профессий для программистов в общем продолжит расти.

Зарплаты мобильных разработчиков 2017: деньги, платформы, стаж и регионы

Независимо от того, в какой группе программистов вы будете находиться, карьера в технологиях означает обучение на протяжении всей жизни. Если вы хотите быть во второй группе высокооплачиваемых профессионалов, вам стоит учиться создавать машины, а не просто управлять ими.

Комментарии
Продолжить чтение

Новости

Самые популярные языки программирования 2017

TIOBE это мгновенный срез того, что используют, а PYPL это то, что намереваются использовать разработчики.

Леонид Боголюбов

Опубликовано

/

TIOBE (The Importance of Being Earnest), один из самых популярных рейтингов языков программирования, опубликовал данные за ноябрь 2017 года и, соответственно, весь год целиком. По данным компании, Java остается самым популярным языком программирования, а за ней следуют С и C++.

С другой стороны, PYPL (PopularitY of Programming Language), еще один рейтинг, так же определи Java как лидера, но на вторые места поставил Python и PHP.

Различие между ними в том, что TIOBE  подсчитывает рейтинг на основе поисковых запросов, а PYPL подсчитывает популярность на основе Google Trends, в которой больше учитываются запросы на руководства и обучение. То есть можно предположить, что TIOBE это мгновенный срез того, что используют, а PYPL это то, что намереваются использовать разработчики.

Вот весь рейтинг за 2017 год:

Комментарии
Продолжить чтение

Наша рассылка

Каждому подписавшемуся - "1 час на UI аудит": бесплатный ускоренный курс для разработчиков веб и мобильных приложений!

Нажимая на кнопку "Подписаться" вы даете согласие на обработку персональных данных.

Популярное

X

Спасибо!

Теперь редакторы в курсе.